1. Kittel, C. 1971. Introduction to solid state physics, New York: Wiley.

2. Szent-Gyorgyi, A. 1941. Towards a new biochemistry? Science 93:609.

3. Evans, M.G., and Gergely, J. 1949. A discussion of the possibility of bands of energy levels in proteins. Biochem. Biophys. Acta 3:188.

4. Szent-Gyorgyi, A. 1951 Bioenergetics. New York: Academic.

5. Szent-Gyorgyi, A. 1960. Introduction to submolecular biology. New York: Academic.

6. Szent-Gyorgyi, A. 1968. Bioelectronics. New York: Academic.

7. Szent-Gyorgyi, A. 1976. Electronic biology and cancer. New York: Marcel Dekker.

8. Rosenberg, B., and Postow, E. 1969. Semiconduction in proteins and lipids-its possible biological import. Ann. N.Y. Acad. Sci. 158:161.

9. Marino, A.A., R.O., Becker, R.O., and Bachman, C.H. 1967. Dielectric determination of bound water of bone. Phys. Med. Biol. 12:367.

10. Pethig, R. 1979. Dielectric and electronic properties of biological materials. New York: Wiley.

11. Marino, A.A., and Becker, R.O. 1969. Temperature dependence of EPR signal in tendon collagen. Nature 222:164.

12. Swartz, H.M., Bolton, J.R., and Borg, D.C. 1972. Biological applications of electron spin resonance. New York: Wiley.

13. Horn, R.A., 1979. Electron spin resonance studies on properties of ceruloplasmin and transferrin in blood from normal subjects and cancer patients. Cancer 43:2392.

14. Fuller, R.G., Marino, A.A., and Becker, R.O. 1976. Photoconductivity in bone and tendon. Biophysical J. 16:845.

15. Szent-Gyorgyi, A. 1946. Internal photo-electric effect and band spectra in proteins. Nature 157:875.

16. Eley, D.D., and Metcalfe, E. 1972. Photoconduction in proteins. Nature 239:344.

17. Cady, W.G. 1946. Piezoelectricity. New York: Dover.

18. Fukada, E., and Yasuda, l. 1957. On the piezoelectric effect of bone. J. Phys. Soc. Japan 12:1158.

19. Bassett, C.A.L., and Becker, R.O. 1962. Generation of electric potentials by bone in response to mechanical stress. Science 137:1063.

20. Shamos, M.H., Lavine, L.S., and Shamos, M.I. 1963. Piezoelectric effect in bone. Nature 1978:81.

21. McElhaney, J.H. 1967. The charge distribution on the human femur due to load. J. Bone Joint Surg. 49A:1561.

22. Anderson, J.C.; and Eriksson, C. 1970. Piezoelectric properties of dry and wet bone. Nature 227:491.

23. Marino, A.A., Soderholm, S.C., and Becker, R.O. 1971 Origin of the piezoelectric effect in bone. Calc. Tiss. Res. 8:177.

24. Treharne, R.W. 1981 Review of Wolf's Law and its proposed means of operation. Ortho. Rev. 10:25.

25. Currey, J.D. 1968. The adaptation of bones to stress. J. Theoret. Biol. 20:91.

26. Epker, B.N., and Frost, H.M. 1965. Correlation of bone resorption and formation with the physical behavior of loaded bone. J. Dent. Res. 44:33.

27. Becker, R.O., Bassett, C.A.L., and Bachman, C.H. 1964. Bioelectric factors controlling bone structure. In Bone biodynamics, ed. H.M. Frost, p. 209. New York: Little, Brown.

28. Marino, A.A., and Becker, R.O. 1970. Piezoelectric effect and growth control in bone. Nature 228:473.

29. Marino, A.A., and Becker, R.O. 1974. Piezoelectricity in bone as a function of age. Calc. Tiss. Res. 14:327.

30. Marino, A.A., and Becker, R.O. 1975. Piezoelectricity in hydrated frozen bone and tendon. Nature 253:627.

31. Friedenberg, Z.B., and Brighton, C.T. 1966. Bioelectric potentials in bone. J. Bone Joint Surg. 48A:915.

32. Cerguiglini, S., Cignitti, M., Marchetti, M., and Salleo, A. 1967. On the origin of electrical effects produced by stress in the hard tissues of living organisms. Life Sci. 6:2651.

33. Jahn, T.L. 1968. A possible mechanism for the effect of electrical potentials on apatite formation in bone. Clin. Orthop. 56:261.

34. Gillooloy, C.J., Hosley, R.T., Mathews, J.R., and Jewett, D.L. 1968. Electric potentials recorded from mandibular alveolar bone as a result of forces applied to the tooth. Am. J. Orthodontics. 54:649.

35. Mumford, J.M., and Newton, A.V. 1969. Transduction of hydrostatic pressure to electrical potential in human dentin. J. Dent. Res. 48:226.

36. Dwyer, J.P., and Matthews, B. 1970. The electrical response to stress in dried, recently excised, and living bone. Injury 1:279.

37. Cochran, G.V.B. 1974. A method for direct recording of electromechanical data from skeletal bone in living animals. J. Biomech. 7:563.

38. Black, J., and Korostoff, E. 1974. Strain-related potentials in living bone. Ann. N.Y. Acad. Sci. 238:95.

39. Eriksson, C. 1974. Streaming potentials and other water-dependent effects in mineralized tissues. Ann. Acad. Sci. 238:321.

40. Steinberg, M.E., Lyet, J.P., and Pollack, S.R. 1980. Stress-generated potentials in fracture callus. Trans. 26th Ann. ORS 5:115.

41. McElhaney, J.H., Stalnaker, R., and Bullard, R. 1968. Electric fields and bone loss of disuse. J. Biomechanics 1:47.

42. Martin, R.B., and Gutman, W. 1978. The effect of electric fields on osteoporosis of disuse. Calcif. Tiss. Res. 25:23.

43. Lang, S. 1966. Pyroelectric effect in bone and tendon. Nature 212:704.

44. Athenstaedt, H. 1974. Pyroelectric and piezoelectric properties of vertebrates. Ann. N.Y. Acad. Sci. 238:68.

45. Athenstaedt, H. Permanent electric polarization and pyroelectric behavior of the vertebrate skeleton (parts 1-4). Z. Zellforsch. 91:135, 92:428 (1968); 93:484, 97:537 (1969).

46. Mascarenhas, S. 1973. The electret state: a new property of bone. In Electrets, ed. M.M. Perlman, p. 650. Princeton: The Electrochemical Society.

47. Mascarenhas, S. 1974. The electret effect in bone and polymers and the bound-water problem. Ann. N.Y. Acad. Sci. 238:36.

48. Fukada, E., Takamaster, T., and Yasuda, I. 1975. Callus formation by electret. Japan J. Appl. Phys. 14:2079.

49. Fukada, E. Piezoelectricity of bone and osteogenesis by piezoelectric films. In Press.

50. Parks, R.D. 1969. Superconductivity. New York: Marcel Dekker.

51. Little: W.A. 1964. Possibility of synthesizing an organic superconductor. Phys. Rev. 134A:1416.

52. Little, S.A. 1965. Superconductivity at room temperature. Sci. American 212:21.

53. Ginzburg, V.L. 1964. On surface superconductivity. Phys. Lett. 13:101.

54. Ginzburg, V.L. 1968. The problem of high temperature superconductivity. Contemp. Physics 9:355.

55. Halpern, E.H., and Wolf, A.A. 1972. Speculations of superconductivity in biological and organic systems. Adv. Cryogenic Eng. 17:109.

56. Wolf, A.A., and Halpern, E.H. 1976. Experimental high temperature organic superconductivity in the cholates: a summation of results. Physiol. Chem. Phys. 8:31.

57. Wolf, A.A. 1976. Experimental evidence for high-temperature organic fractional superconduction of cholates. Physiol. Chem. Phys. 8:495.

58. Ahmed, N.A.G., Claderwood, J.H., Frohlich, H., and Smith, C.W. 1975. Evidence for collective magnetic effects in an enzyme. Likelihood of room temperature superconductive regions. Phys. Lett. 53A:129.

59. Cope, F.W. 1971. Evidence from activation energies for superconductive tunneling in biological systems at physiological temperatures. Physiol. Chem. Phys. 3:403.

60. Cope, F.W. 1978. Discontinuous magnetic field effects (Barkhausen noise) in nucleic acids as evidence for room temperature organic superconduction. Physiol. Chem. Phys. 10:233.

61. Misakian, M., Kotter, F.R., and Kahler, R.L. 1978. Miniature ELF electric field probe. Rev. Sci. Instrum. 47:933.

62. Geddes, L.A., and Baker, L.E. 1967. The specific resistance of biological material-a compendium of data for the biomedical engineer and physiologist. Med. biol. Engng. 5:771.

63. Presman, A.F. 1970. Electromagnetic fields and life. New York: Plenum.

64. Schwan, H.P. 1957. Electrical properties of tissue and cell suspensions. In Advances in biological and medical physics, vol. 5, eds. J.H. Lawrence, and C.A. Tobias, p. 147. New York: Academic.

65. Marino, A.A., Berber, T.J., Becker, R.0., and Hart, F.X. 1974. Electrostatic field induced changes in mouse serum proteins. Experientia 30:1274.

66. Hart, F.X., Marino, A.A. 1976. Biophysics of animal response to an electrostatic field. J. Biol. Phys. 4:124.

67. Marino, A.A., Cullen, J.M., Reichmanis, M., Becker, R.0., and Hart, F.X. 1980. Sensitivity to change in electrical environment: a new bioelectric effect. Am. J. Physiol. 239:R424.

68. Hart, F.X., and Marino, A.A. ELF dosage in ellipsoidal models of man due to high voltage transmission lines. In Press.

69. Beischer, D.E., Grissett, J.D., and Mitchell, R.E. 1973. Exposure of man to magnetic fields alternating at extremely low frequency, AD 770I40, NAMRL 1180. Pensacola, Florida: Naval Aerospace Medical Research Laboratory.

70. McRee, D.I., Hamrick, P.E., and Zinkl, J. 1975 . Some effects of exposure of the Japanese quail embryo to 2.45 GHz microwave radiation. Ann. N.Y. Acad. Sci. 247:377.

Chapter 4 Index